

the Canaries in the Coal Mines

"Corals: our Canaries in the Coal Mines"

Why Do We Care?

Value of Reefs

- up to \$375 billion in fish, seafood, tourism, and coastal protection worldwide \$100,000-\$600,000 /km²
- \$17 billion in U.S. tourism
- 45 million tourist visits to U.S. reefs
- \$247 million in commercial fishing on U.S. reef fish
- 1 billion people rely on reef fish for food
- One of the most diverse systems on earth

Why Do We Care?

Worldwide Reef Deterioration

- 2/3 of reefs are severely degraded
- 1/4 of reefs may be past recovery
- Over 15% of the world's reefs died in 1997-1998 El Niño after bleaching

Top Threats to Reefs:

ORDI REEF WATE

- Human Population Growth
- Overfishing
- Coastal Development
- Lack of Laws / Enforcement
- Sedimentation (unnatural)
- Lack of Education
- Nutrient Enrichment
- Algal Competition
- Climate Change / Bleaching
- Habitat Destruction
- Tourism

coral/reer

2004 Survey: 276 Coral Reef Scientists Kleypas and Eakin (2007)

Outline

ORDY REEE WAT

Introduction

- Why do corals bleach?
- Bleaching warnings from space

2005 Caribbean Bleaching Event

- Extent of bleaching
- Climate context: why did the corals bleach?

Future Bleaching

- Climate of the 21st Century
- How will corals respond?
- What can we do?

What is Coral Bleaching?

 Most of corals' food comes from photosynthesis

Symbiotic algae

What is Coral Bleaching?

 Most of corals' food comes from photosynthesis

 Corals can "bleach" due to stress

 Corals exposed to high temperatures and/or high light become stressed

 Corals eject their algae; coral appears "bleached

 If stress is mild or brief, corals recover, otherwise they die coral reer

Recent Decades: Catastrophic, Unprecedented Bleaching

Widespread bleaching in Belize (from Aronson and Precht 1997, 2001)

NOAA Coral Reef Watch Program Satellite Near Real-Time Coral Bleaching HotSpot Products

(Twice-weekly at 50km resolution)

http://coralreefwatch.noaa.gov

Thermal Stress Index: **NOAA Degree Heating Weeks**

1 DHW =1°C above maximum monthly mean for 1 week

 \geq 4 DHWs \rightarrow

coral bleaching is expected mass bleaching and mortality are expected

Contributed Bleaching Reports

Percent of Coral Colonies Bleached

Bleaching Can Lead to Disease

ORDI REEF WATO

8-16-05

- Many bleached colonies have become diseased
- Some diseases are rapid and devastating

Inshore patch reefs Middle Florida Keys

Marilyn E. Brandt University of Miami

Immediate Mortality (by Jan. 2006)

Virgin Islands N.P. Coral Bleaching Surveys

S. Fore Reef, BUIS

Tektite, VIIS

Haulover, VIIS

Mennebeck, VIIS

Yawzi, VIIS

Newfound, STJ

96% coral cover bleached 42% coral cover dead

90% coral cover bleached 54% coral cover dead

96% coral cover bleached 45% coral cover dead

94% coral cover bleached 49% coral cover dead

71% coral cover bleached 39% coral cover dead

92% coral cover bleached 53% coral cover dead

Photo by Judd Patterson

Florida: Missing the Worst

Katrina Rita Wilma

oralreefwatch.noaa.gov

2005 Hurricane Season Most named storms Most hurricanes Most damage in US

Warmest Caribbean in Over 100 Years

Warmest September in eastern Caribbean

Future change

Bleaching Under Future Climates?

Projected bleaching frequency of DHM > 1under SRES A2 (Donner et al. Global Change **Biology** 2005)

Bleaching Under Future Climates?

Corals must adapt to 0.2°C/decade temperature rise (Donner et al. 2005)

Importance of Genetic Diversity in Coral Survival

Global & Local Scales

My Reef is Bleaching, What Can I do?

- Result of international workshop, research, and planning
- Australia: Great Barrier Reef Marine Park Authority
- US: NOAA and EPA
- IUCN

Now Available at coralreef.noaa.gov

Local managers can:

- Reduce bleaching
 - Reduce light stress
 - Cool reefs, increase mixing

Local managers can:

- Reduce bleaching
 - Reduce light stress
 - Cool reefs, increase mixing

Local managers can:

- Reduce bleaching
 - Reduce light stress
 - Cool reefs, increase mixing
- Increase survival
 - Improve water quality
 - Reduce disease prevalence

Local managers can:

- Reduce bleaching
 - Reduce light stress
 - Cool reefs, increase mixing
- Increase survival
 - Improve water quality
 - Reduce disease prevalence
- Aid recovery

coral/reel

- Coral fragmentation
- Encourage recruitment
- Protect ecosystem functions (herbivory)

Ocean Acidification

The Elephant in the Room:

http://coralreefwatch.noaa.gov

We don't want to lose all of our canaries

Conclusions

- Threats to coral reefs continue to increase
- As oceans warm, bleaching will continue
- Necessary Change: Slow or reverse emissions
- Buy Time: Increase ecosystem resilience

• Can improved management save reefs from ecological disaster?

