The Interplay of Tectonics, Climate Change and Sea Level: Florida's Transformation over Geologic Time

Dr. John Jaeger
Department of Geological Sciences
University of Florida

Drs. A Randazzo and G. McClellan

Geologic Time Scale

Global Climate Through Geologic Time

"BLAG" model (Berner, Lasaga, and Garrels) of Climate-Tectonic Interaction: Variations in seafloor spreading rates lead to variations in volcanic outgassing and, thus, atmospheric CO₂ concentrations. Chemical weathering of rock removes atmospheric CO₂.

Geologic Cross Section of the Florida Peninsula

Geologic Cross Section Showing Generalized Basement Structure

Global Plate Tectonics

Crustal Plate Boundaries Coastlines, Political Boundaries

Florida's Geologic Past

Florida in the Late Proterozoic

Florida's Geologic Past

Global Climate Through Geologic Time

Florida in the Mesozoic

Florida

Florida in the Mesozoic

Global Climate Through Geologic Time

Global Ice Sheet Formation

Pictures courtesy NASA/Goddard Space Flight Center Scientific Visualization Studio

Marine Isotopic Record of Cenozoic Sea Level Fluctuations

Light oxygen in water (H₂¹⁶O) evaporates more readily that water with heavy oxygen (H₂¹⁸O). Hence oceans will be relatively rich in ¹⁸O when glaciers grow and hold the precipitated ¹⁶ O

Carbonate Microfossils (CaCO₃)

Cenozoic Sea Level Fluctuations

Recent Sea Level Fluctuations

"Icehouse" Sea Level Fluctuations

Miocene Paleoceanography and Phosphates

Miocene-Pliocene Sea-Level Low stands

Sea-Level Lowstands and Karstification

Recent Sea Level Fluctuations

Sea Level Changes Over Four Glacial Cycles

Late Pleistocene Sea Level Fluctuations

Evidence for Recent Sea Level Low Stands

Previous Four Interglacial Highstands

Recent Sea Level Fluctuations and Creation of Terraces

(Healy)1975 -FGS Map 71

Atlantic Coastal Plain PliocenePleistocene Ridges

South Florida Plio-Pleistocene Coral "Atolls"

After Meeder (1979) and Petuch (1982)

Old Tidal Channels Transverse Glades in Miami-Dade County

Oolite Phase of Miami Limestone

Accommodation Space – – Relative Sea Level

WG1 TS FIGURE 24

Projected Sea Level Rise

