
Herpetological Conservation and Biology 10(2):621–632. 

Submitted: 30 September 2014; Accepted: 23 June 2015; Published: 31 August 2015. 

Copyright © 2015. Ikuko Fujisaki 621 
All Rights Reserved 

 

GEOGRAPHIC RISK ASSESSMENT REVEALS SPATIAL VARIATION IN 

INVASION POTENTIAL OF EXOTIC REPTILES IN  

AN INVASIVE SPECIES HOTSPOT 

 
IKUKO FUJISAKI

1,3
, FRANK J. MAZZOTTI

1
, JAMES WATLING

1
, KENNETH L. KRYSKO

2
,  

AND YESENIA ESCRIBANO
1 

 
1University of Florida, Ft. Lauderdale Research and Education Center, 3205 College Ave., Davie, Florida 33314, USA 

2Florida Museum of Natural History, Division of Herpetology, 1659 Museum Road, University of Florida,  

Gainesville, Florida 32611-7800, USA 
3Corresponding author, e-mail: ikuko@ufl.edu 

 

Abstract.—Invasive species are among the primary threats to biodiversity and risk assessment is one problem-solving 

approach that can prioritize and guide efforts to reduce the negative consequences of invasion.  We used a niche-

modeling framework to conduct a geographic risk assessment of exotic reptiles in the state of Florida, USA, a region with 

the highest density of invasive herpetofaunal species in the world.  We then compared model predictions with observed 

records of exotic species across the state.  We compiled georeferenced native occurrence locations of exotic reptile species 

found in Florida and used maximum entropy modeling with global-scale environmental data as inputs.  The predicted 

number of species with suitable habitat was variable across the state and by management units, and it generally 

decreased with increasing latitude.  These predictions were supported by observed richness of exotic species in the lower 

latitude and the known problem of exotic reptiles in southern Florida.  Overall, minimum temperature made the greatest 

contributions in model predictions, but the level of each variable’s contributions varied by species.  The overall omission 

rate with the test data was small, but it was largely variable by species when we used the occurrence locations in Florida.  

Our use of a niche-modeling for geographic risk assessment of an assemblage of exotic reptile species can be applied cost-

effectively to identify areas most susceptible to invasion.  The observed large geographic variability in number of 

potential exotic reptiles suggests that local-scale environmental data can be employed to enhance management 

applications. 
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INTRODUCTION 

 

The United States is the greatest importer of exotic 

(nonnative) animals in the world, with more than 1 

billion live animals entering the country from 2005 

through 2008 (U.S. Government Accountability Office. 

2010. Live Animal Imports. Available from 

http://www.gao.gov/new.items/d119.pdf [Accessed 24 

August 2010]).  Although there are a number of 

pathways for the introduction of exotic species (Carlton 

et al. 2003), escapees from the pet trade can increase 

propagule pressure and facilitate the establishment of 

invasive species.  Invasive species are a subset of exotic 

species that sustain self-replacing populations, produce 

fertile offspring, become widespread, and may cause 

harm to humans, ecosystems, or the economy (Invasive 

Species Advisory Committee. 2006. Available from 

http://www.invasivespeciesinfo.gov/docs/council/isacdef

.pdf [Accessed 13 January 2011]; Smith et al. 2009; 

Richardson et al. 2011).  Because of the enormous 

economic, social, and ecological impacts of invasive 

species (Blackburn et al. 2008; Smith et al. 2009) and 

because removal of invasive species can be expensive 

and labor-intensive once they are established, 

management agencies seek effective approaches for 

early detection and removal of exotic species to prevent 

establishment of invasive species (Colunga-Garcia et al. 

2010).  Risk assessments, either taxonomic (Kolar and 

Lodge 2002; Bomford et al. 2009; Fujisaki et al. 2010) 

or geographic (Peterson and Vieglais 2001; Andersen et 

al. 2004b), provide one such management tool, by 

identifying species with a high risk of invasion success 

and the areas most likely to be populated by invasive 

species (Andersen et al. 2004a; Davis 2006).   

Species distribution models or ecological niche 

models are frequently used to predict the potential range 

of exotic species (Welk et al. 2002; Peterson and 

Vieglais 2001; Andersen et al. 2004b) to assess invasion 

potential (e.g., their ability to spread over long distances; 

Richardson et al. 2011).  A general approach is to 

parameterize models based on the native and 

successfully established range of species and project the 

defined environmental correlates into the adventive 

range (Welk et al. 2002; Richardson and Thuiller 2007; 

Ibanez et al. 2009).  Although there are limitations to 

using species distribution models to forecast invasion 

http://www.gao.gov/new.items/d119.pdf
http://www.invasivespeciesinfo.gov/docs/council/isacdef.pdf
http://www.invasivespeciesinfo.gov/docs/council/isacdef.pdf
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risk, the approach has been used to successfully predict 

invasion risk in areas subsequently shown to have been 

invaded by target species (Arriaga et al. 2004; Ficetola et 

al. 2007; Urban et al. 2007).  To understand the 

mechanism of species range shifts in the face of global-

scale ecological changes, various methods have been 

developed that allow predictions using presence-only 

data, thereby expanding the use of existing-species 

occurrence data (Elith et al. 2011).  Among 

environmental variables, climate variables (e.g., 

temperature and precipitation) are often seen as primary 

driving factors.  Models are further refined with 

additional environmental variables such as land cover 

type (Pearson et al. 2004; Bradley and Mustard 2006; 

Ficetola et al. 2007).   

The state of Florida, USA, with its subtropical and 

tropical climates and high human population, provides a 

unique opportunity to optimize a geographic invasion 

risk assessment because the sheer number of exotic 

species that are established, that have failed to establish, 

and whose fate is unknown (Meshaka et al. 2004; 

Krysko et al. 2011; Meshaka 2011) allows for efficient 

validation of model predictions.  Furthermore, Florida 

has been a living laboratory of invasion for decades and 

several general trends regarding invasion patterns in 

Florida are apparent.  For example, exotic species 

richness decreases with increasing latitude in Florida 

(Smith 2006), in contrast to the trend for native species, 

which show greatest richness in the northern portion of 

the state (Means and Simberloff 1987).  However, 

covariation among multiple abiotic gradients (e.g., 

temperature, altitude, and precipitation) and latitude in 

Florida obscure the primary determinants of the apparent 

latitudinal gradient in exotic species richness (Means and 

Simberloff 1987; Krysko et al. 2010).  Geographic 

variation in propagule pressure, such as frequency of 

introduction, also obscures the cause of this pattern.  It is 

not clear how the number of exotic species that can 

potentially establish vary spatially and how these 

variations are affected by environmental factors.  The 

primary objective of this study is to examine geographic 

variability in the predicted index of suitable conditions 

and number of species that may potentially establish 

throughout the state of Florida by applying a species 

distribution model to an assemblage of exotic reptile 

species.  We also validate model predictions using 

records of observed locations of exotic reptiles in 

Florida. 

 

MATERIALS AND METHODS 

 

Study site.—Much of the state of Florida is an 

approximately 600-km-long peninsula that comprises 

151,939 km
2
 of land area as a part of the coastal plain in 

the southeastern United States.  Most of the area lies in 

the subtropical climate zone, which is characterized by 

hot, humid summers and mild, wet winters (Henry et al. 

1994).  The southernmost area of the state is generally 

considered a part of the tropical savanna region with 

highly concentrated precipitation in warmer months.  

Mean minimum temperature of the coldest month ranges 

from 3.3 ºC to 18.3 ºC from north to south (Henry et al. 

1994). There is a little variation in mean maximum 

temperature during the summer from north to south, 

ranging from 31.7 ºC to 33.3 ºC, but there is a noticeable 

difference between coastal and interior areas (Henry et 

al. 1994).  The landscape of the state is a mosaic of 

agricultural, natural, and urban habitats.  There are a 

number of protected areas, such as state and national 

parks, a national preserve, and national wildlife refuges, 

in which a variety of native fauna is found.  Due to the 

climatic and geographic virtues, the state is highly 

susceptible to biological invasions.   

 

Data collection.—Using various sources (described in 

Fujisaki et al. 2010), we compiled a list of exotic reptiles 

in Florida that have successfully established.  This 

preliminary list included 51 established species (one 

crocodilian, 42 lizards, four snakes, and four turtles) and 

24 introduced (observed) species, which are exotic 

species that have been found in Florida and failed to 

become established or whose status are unknown (12 

lizards, five snakes, and seven turtles).  Details on the 

introduction history of these species are available in 

Krysko et al. (2011).  Although additional species have 

been observed and are potentially established, we 

included only species for which we could verify the 

source of information (e.g., museum collection or 

published literature) at the time of our data collection. 

We obtained coordinates of observed locations of 

species in their native and naturalized range outside of 

Florida where species have been established for a long 

term from Global Biodiversity Information Facility 

(GBIF), a public online database (GBIF data portal. 

Available from http://data.gbif.org [Accessed 2 April 

2010]).  We removed erroneous data for which the 

descriptive location and geographical location 

(coordinate) did not match.  Although use of information 

outside of the native range could have enhanced 

distributional predictions (Jiménez-Valverde et al. 2011), 

we used only known native and naturalized occurrence 

data for this study because we were not able to identify 

whether those occurrence locations in GBIF were from 

individuals that were successfully established.  To 

ensure that models were trained on data only from the 

native range of a species, we cross-checked occurrence 

locations with the native and naturalized range of each 

species outside of Florida, based on the literature, and 

we removed observations that fell outside of that range.  

We also obtained occurrence data of exotic animals in 

Florida from both the Division of Herpetology, Florida 

Museum of Natural History, University of Florida (UF-

http://data.gbif.org/
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Herpetology), and the Florida Fish and Wildlife 

Conservation Commission (FWC), and used only 

accurately georeferenced locations. 

 

Global climate and geophysical data.—We obtained 

raster data of 19 current bioclimate variables that 

represent the years 1950–2000 and altitude from the 

Worldclim database (Available from http://www. 

worldclim.org [Accessed 26 August 2010]; Hijmans et 

al. 2005).  We used Moderate Resolution Imaging 

Spectroradiometer (MODIS)/Terra Land Cover Type 

2007 data with the International Geosphere-Biosphere 

Programme (IGBP) vegetation classification scheme, 

which differentiates 16 classes of land cover (Friedl et 

al. 2002).  We reprojected the raw MODIS data with the 

MODIS reprojection tool and then resampled the raster 

data to match the 30 arc-second grid of the climate and 

altitude data using nearest-neighbor assignments.  All 

land cover classes except for snow and ice are present in 

Florida.  We aggregated the original classes into eight 

representative classes: forest, shrubland, grasslands, 

cropland, urban and built-up, barren or sparsely 

vegetated, wetland, and fresh water. 

 

Model and analysis.—We used the maximum entropy 

(MaxEnt) algorithm (Phillips et al. 2006; Elith et al. 

2011), which (1) efficiently handles interactions between 

response and predictors (Elith et al. 2006, 2011); (2) 

produces robust predictions even with a small amount of 

presence-only data (Elith et al. 2006; Hernandez et al. 

2006; Guisan et al. 2007); and (3) is simple to apply and 

provide associated diagnostic results in readily 

examinable forms (Phillips et al. 2006), making this 

method particularly useful in predicting distribution of 

multiple species.  Because we were interested in the 

potential distribution of assemblages of exotic reptiles 

and anticipated that only a small number of occurrence 

records in the native range would be available for some 

of our target species, these traits of MaxEnt were 

important.  A large number of studies have used MaxEnt 

to predict potential distribution of exotic species (e.g., 

Elith et al. 2006; Jimenez-Valverde et al. 2011). 

MaxEnt is a machine-learning method for species 

distribution modeling that uses presence data and 

background absence data (Phillips et al. 2006) to define 

a spatially explicit probability distribution of the 

environmental suitability for a particular species.  

Following Phillips et al. (2009), we used a target-group 

background approach that introduces similar biases in 

the background data and the presence data, such as 

uneven detection rate and propagule pressure in natural 

and populated areas.  We used the lowest-presence 

threshold (Pearson et al. 2007) with MaxEnt 3.3.3k, 

which uses the lowest value of the predicted index 

(larger values indicate greater suitability) of suitable 

conditions at locations of species presence as a threshold 

value.  MaxEnt assesses variable contribution during the 

model optimization process, with improvement made by 

changes in coefficients associated with each variable 

converted to percent to quantify the contribution of each 

variable to the overall model.  Another measure of 

variable importance is permutation importance, which is 

determined by randomly permuting the values of each 

variable at training points and measuring the decline in 

AUC (Area Under the Curve; Phillips. 2014. A brief 

tutorial on Maxent. Available at from http://www. 

cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc  

[Accessed 20 November 2014]). 

Because obtaining reliable variable importance 

requires the input of uncorrelated variables, we 

calculated bivariate correlation between the variables 

and derived a set of uncorrelated variables (r < 0.5).  

These variables are minimum temperature of coldest 

month, precipitation of wettest month, precipitation of 

driest month, precipitation seasonality, altitude, and land 

cover type.  With eight reclassified land cover types, 

there were 13 predictor variables (eight categorical + 

five continuous variables).  Hernandez et al. (2006) 

compared modeling algorithms and reported that 

MaxEnt was the most capable in prediction with 

occurrence locations as small as 5, 10, and 25.  

Considering available number of occurrence locations 

and including representative number of species, we set 

the minimum number of native occurrence locations to 

130 so that there were at least 10 locations for each 

predictor. 

We assessed the predictive performance of the model 

for each species using the area under the receiver 

operating characteristic curve (AUC), a threshold-

independent measure of model performance that 

measures the degree to which predicted probabilities at 

random occupied points exceed those at random 

background points (Fielding and Bell 1997).  We 

employed 10-fold cross-validation and we randomly 

split each subset of the native occurrence location data 

into training and testing subsets, using about 90% of the 

presence data to train models and the remaining 10% as 

test cases to calculate AUC.  A large difference between 

training and test AUC values indicates overfitting 

(Radosavljevic and Anderson 2014).  MaxEnt models 

can restrict predictions to areas where environmental 

conditions are within those observed in the native range 

by bounding environmental variables in a process called 

clamping.  It also produces Multivariate Environmental 

Similarity Surface (MESS) to provide information on 

whether the environmental variables of the predicted 

area are within the range of the training data.   

To understand regional differences in number of 

species with above-the-threshold index, we compared 

number of species with suitable habitat for each group of 

established and introduced species among 10 regions of 

the FWC Upland Invasive Plant Working Groups.    The  
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TABLE 1. Summary of AUC and omission rate for training, test, and validation (occurrence in Florida) in MaxEnt prediction of 14 exotic reptiles 

in Florida. 

Species n 

Training 

AUC 

Test 

AUC 

Presence 

area 

Test 

omission 

n 

Validation 

Validation 

omission 

Agama agama 156 0.98 0.97 0.18 0.01 19 1.00 

Ameiva ameiva 177 0.95 0.93 0.23 0.03 4 0.50 

Anolis chlorocyanus 193 0.96 0.96 0.16 0.01 1 0.00 

Anolis cybotes 512 0.95 0.95 0.20 0.00 -- -- 

Basiliscus vittatus  203 0.96 0.94 0.28 0.01 11 0.27 

Calotes versicolor 304 0.96 0.95 0.40 0.01 -- -- 

Eutropis multifasciata 167 0.95 0.92 0.31 0.02 -- -- 

Gehya mutilata 350 0.94 0.93 0.55 0.00 -- -- 

Gekko gecko 144 0.94 0.91 0.31 0.02 5 0.80 

Hemidactylus frenatus  442 0.93 0.92 0.90 0.00 1 0.00 

Hemidactylus turcicus  973 0.86 0.85 0.72 0.00 8 0.00 

Phrynosoma cornutum 615 0.95 0.95 0.96 0.00 -- -- 

Stellagama stellio 286 0.97 0.97 0.54 0.00 -- -- 

Tarentola mauritanica 2,536 0.93 0.93 0.50 0.00 -- -- 

        
 

regions of the working groups are as follows: east 

central, Mosquito Coast, northeast, Panhandle, southeast, 

southwest, Sun Coast, Treasure Coast, west central, and 

Withlacoochee.  They are also serving as contact points 

for reporting invasive animals.  Using only accurately 

georeferenced and non-duplicated occurrence locations 

in Florida provided by FWC, we calculated the omission 

rate, that is, the number of observed locations that 

occurred in the area where the predicted probability was 

below the threshold divided by total number of 

occurrence locations. 

 

RESULTS 

 

Among all established and introduced reptile species 

in Florida, we applied the MaxEnt model to predict the 

index of suitable conditions for 14 species, excluding 

species for which we did not find a sufficient number of 

native occurrence locations (Table 1, Appendix 1).  The 

available number of native occurrence locations was 

highly variable; for the species we modeled, the mean 

number of native range occurrences after removing 

duplicate locations was 504.1 (SD = 628.5) and ranged 

from 144 to 2,536 locations (Table 1).  The predicted 

index was then converted to potential species presence 

or absence based on the lowest-presence threshold.  

Overall performance of models for the 14 species was 

high (mean test AUC = 0.93 ± 0.03 SD, range = 0.85–

0.97; Table 1), indicating that, on average, predicted 

index of suitable conditions at observed locations was 

greater than the background points (AUC > 0.5 indicates 

better discrimination than the background points).  

Visual inspection of response curves and the absence of 

a large difference between test and training AUC 

(training AUC minus test AUC < 0.03) did not indicate a 

problem of overfitting. 

By examining differences in predicted values with and 

without clamping, we confirmed that clamping did not 

alter the predicted values (i.e., our results were not 

strongly affected by prediction into environmental space 

not represented in species native ranges).  The MESS 

indicated that one or some predictor variables in a small 

portion of Florida along the coast are out of the training 

data for one species, Stellagama stellio; and, thus, a 

caution is required to interpret the prediction in the area 

for this species (Appendix 1).  Although this species has 

been observed in Florida, only two known specimens 

have been collected and its establishment has not been 

evidenced. 

Both predicted index of suitable conditions and 

number of species above the threshold probability were 

highly variable across the state (Fig. 1, Appendix 1).  

The predicted number of species increased in the lower 

latitude, and the regional summary showed distinct 

differences between northern and southern regions (Fig. 

2); for example, 11 species were above the threshold 

index in the southern part of the state (Fig. 1).  However, 

this trend was not necessarily consistent for all species.  

This inverse trend held for most of the species (11 

species; Spearman’s ρ: ˗0.94 to ˗0.74, P < 0.001 for all); 

but for three species (Hemidactylus turicus, Stellagama 

stellio, and Tarentola mauritanica), the index increased 

with increasing latitude (Spearman’s ρ: 0.83–0.91, P < 

0.001 for all three species). 

Among predictor variables, on average, minimum 

temperature made the largest contribution to the 

prediction (42.8%), followed by precipitation of wettest 

month (20.4%), precipitation seasonality (14.6%), 

precipitation of driest month (9.1%), land cover type 

(7.6%), and altitude (5.5%).  This order was consistent 

for the permutation importance, except that the land 

cover type had the smallest percent (Table 2).  For 14 

assessed species, there were 181  unduplicated  observed  
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FIGURE 1. Predicted total number of species whose index that the environmental conditions are suitable is above minimum training threshold 

based on 14 exotic reptiles in Florida using MaxEnt. 

 

 

 

 
FIGURE 2. A map of 10 Florida regions (left) as defined by the Florida Fish and Wildlife Conservation Committee Upland Invasive Plant 

Working Group, and box plots (right) of MaxEnt-predicted median probability and number of species above minimum training thresholds in each 

region.  For the box plot, the thick horizontal lines are the medians, the boxes encompass the 1st to 3rd quartiles, and the open circles are outliers. 

 

locations that were accurately georeferenced in Florida.  

When the test data were used, the overall omission rate 

was low, ranging from 0 to 0.03 (Table 1).  But when the 

observed location data in Florida were used, the 

omission rate was highly variable by species, from 0 (no 

omission) to 1.0 (all omitted; Table 1). 

 

DISCUSSION 

 

Florida is generally thought to be highly susceptible to 

reptile invasions, but our results showed great variability 

in the predicted number of exotic reptile species for 

which conditions are suitable across the state.  In 

general, the predicted number of  species  was  higher  in  
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TABLE 2. Summary of variable contribution and permutation importance of each environmental variables used in MaxEnt prediction for 14 

exotic reptiles in Florida. The six environmental variables are: minimum temperature of coldest month, precipitation of wettest month, 

precipitation seasonality, precipitation of driest month, altitude, and land cover type (forest, shrubland, grasslands, cropland, urban and built-up, 

barren or sparsely vegetated, wetland, and water). 

 

  Variable contribution (%) 
 

Permutation importance (%) 

Variables Mean SD Min. Max. 
 

Mean SD Min. Max. 

Min. temperature  42.76 21.28 9.97 83.58  46.82 20.15 9.32 78.43 

Precipitation wettest  20.35 18.83 1.10 67.63  19.51 23.36 0.62 83.14 

Precipitation season  14.56 15.27 2.56 56.68  13.45 13.60 1.48 46.88 

Precipitation driest  9.18 9.38 0.59 35.59  13.37 8.48 0.97 29.80 

Land cover 7.51 11.91 0.15 47.34  1.54 1.32 0.01 4.72 

Altitude 5.64 7.09 0.26 24.29  5.30 5.54 0.50 20.91 

 
    

 
    

 

 

lower latitudes, underscoring the problems of exotic 

reptiles in southern Florida, such as the growth of large 

exotic snake populations in Everglades National Park 

and the Florida Keys (Snow et al. 2007).  In Florida, 

thermal clines follow a latitudinal gradient, so this 

observed trend is essentially characterized by climatic 

factors.  In fact, minimum temperature is the dominant 

factor contributing to MaxEnt predictions, contributing 

about 42% to predicted probability of suitable 

conditions.  Because of the high correlation between 

minimum and maximum temperatures, we included only 

minimum temperature in our prediction; however, for 

many reptile species, both minimum and maximum 

temperature have an important influence on physiology 

and behavior, such as survival and reproduction, and 

may be determining factors for species distribution 

(Mazzotti et al. 2011).  Because many exotic reptiles in 

the animal trade are of a tropical and subtropical origin, 

their native ranges are typically characterized by warm 

temperatures.  Susceptibility of exotic lizards and snakes 

to cool temperatures was evidenced by the die-off of 

Burmese Pythons (Python bivittatus) in the Everglades 

region and Green Iguanas (Iguana iguana) in southern 

Florida during a prolonged cold period in January 2010 

(Avery et al. 2010; Mazzotti et al. 2011).  Previous 

taxonomic risk assessments also suggested that 

successful establishment in an exotic range requires that 

temperatures match those of the native range (Bomford 

et al. 2009; Fujisaki et al. 2010).   

Although climatic factors (temperature and 

precipitation) made an overall larger contribution in 

MaxEnt predictions than nonclimatic factors (land cover 

type and altitude), the level of contributions largely 

varies by species.  Land cover type contributed only 

0.16% for Phrynosoma cornutum, but the contribution of 

this variable was 47% for Stellagama stellio.  This result 

corroborates a previous study that reported improved 

model prediction when land cover was included in the 

predicted variables (Tingley and Herman 2009).  

Similarly, contribution of altitude showed a large range, 

from 0.26% (Eutropis multifasciata) to 24% 

(Phrynosoma cornutum).  This suggests the importance 

of including these variables despite their relatively small 

average contribution.  With these findings, we note that 

although our approach to summarizing invasion risk of a 

target group is useful in elucidating the overall trend, 

invasion risks vary by species even among the reptile 

group.  In this study, where we examined each variable’s 

contribution separately, a model selection approach 

could be useful in seeking the best set of explanatory 

variables (Warren et al. 2011).  We also found that 

MESS values indicated a high uncertainty of invasion 

risk along the coast by one species (Stellagama stellio), 

which is frequently present in rocky areas in 

Mediterranean, arid, and semi-arid regions (IUCN, 

International Union for Conservation of Nature. 2012. 

The IUCN Red List of Threatened Species. Version 

2014.3. Available from www.iucnredlist.org [Accessed 5 

January 2015]). 

In the face of a growing number of exotic species, 

numerous efforts have been made to address problematic 

exotics in Florida, including early detection and removal.  

One example is the formation of partnerships of federal, 

state, and local government agencies, tribes, nonprofit 

organizations, and individuals in 17 geographically 

stratified areas called Cooperative Invasive Species 

Management Areas (CISMA).  In addition to early 

detection and removal, CISMA activities include 

documentation and data management such as 

maintaining reporting systems, accurately identifying 

species, ascertaining the introduction pathway and status 

of establishment, and georeferencing observed locations.  

Information about species observations and the status of 

each specimen (whether successfully established or not) 

obtained by these efforts is valuable, especially with the 

availability of a tool such as MaxEnt, which allows us to 

readily produce the predictions and diagnostic outputs.  

In this study, we used only occurrence locations in 

native and naturalized ranges where species has been 

established for a long term outside of Florida for 

http://www.iucnredlist.org/
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predictions because of uncertainty about the status of 

observed specimens outside of these ranges in the GBIF 

database.  Information on the status of observed 

specimens allows us to use the occurrence data in the 

state for training and formal validation.  Notably, the 

occurrence data in Florida that we used to calculate the 

omission rate did not indicate the establishment status of 

each specimen.  Whereas lower omission rates with test 

data (subset of native occurrence locations) than with the 

validation data we observed was general when the 

independent validation data set is used (Hijimans 2012; 

Syfert et al. 2013), this unknown status of the individuals 

in the validation data possibly contributed to a large 

omission rate of some species. 

  Use of occurrence locations outside of the native 

range of a species is a way to improve the model in 

accounting for the adaptability of species to establish 

outside of environmental conditions in their native 

range.  The threshold method is another factor that could 

affect the omission rate.  We used minimum training 

value because of small number of occurrence data for 

several species.  This method is considered appropriate 

to guide fieldwork to identify unknown distribution or 

undiscovered species (Pearson et al. 2007).  But there are 

a number of methods and another commonly used 

method is to balance sensitivity and specificity, such as 

maximum sum of sensitivity and specificity (Liu et al. 

2013).  

The geographic assessments we conducted here can 

extend the knowledge gained through previous risk 

assessments by identifying specific geographic areas that 

are highly vulnerable to invasions by particular species 

or groups of species.  Our results could be further refined 

by using finer-scale data of land cover type, which can 

vary within a small management unit.  Finer-scale 

predictions of habitat suitability would allow planning of 

location-specific management activities such as 

monitoring and inventories, even within smaller 

management units such as natural areas (e.g., national 

parks and preserves, state parks) and agricultural areas.  

Also, some studies accounted for life history traits and 

human factors, which tend to correlate to invasion 

success, in predicting establishment success of alien 

reptiles (Fujisaki et al. 2010; Mahoney et al. 2015).  In 

the present study, we only considered environmental 

factors, but these factors are also important in the 

invasion process and thus including these variables may 

improve the predictions.  Finally, the choice of 

modelling algorithm is one of the primary determinants 

of overall model performance (Dormann et al. 2008).  

Choice of the model may depend on the applications and 

data sets.  Sound advice and cautions as well as 

limitations of MaxEnt are found in many articles 

including Phillips (2008), Rodda et al. (2011), and 

Kriticos et al. (2013). 

Since we created our list of target species, additional 

exotic herpetofaunal species have been introduced and 

become established in Florida (Kenneth L. Krysko, pers. 

obs.).  Some institutions in Florida, such as UF-

Herpetology, have been working toward accurately 

georeferencing occurrence locations in the state and 

make the data available online (https://www. 

flmnh.ufl.edu/herpetology/) or shared with other online 

databases such as GBIF and HerpNet 

(http://www.herpnet.org).  Such data could be useful to 

further improve our predictions.  Further, numerous 

imported exotic reptile species have not yet been 

observed in the wild but could be introduced through 

various pathways.  Previous taxonomic risk assessments 

of exotic species have proposed various algorithms to 

predict potentially invasive species and have discussed 

their utility in invasive species management (Hayes and 

Barry 2008).  Such assessments have been a part of the 

Australian national screening protocol for plants 

(Pheloung et al. 1999; Keller et al. 2007) and have been 

recommended for introduction as a part of invasive 

management practice in the United States (Lodge et al. 

2006).  Geographic assessments such as ours can be used 

to develop cost-effective management strategies by 

depicting spatial variability in habitat suitability for 

established, introduced, and imported species over wide 

geographic areas with variable environmental 

conditions. 
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APPENDIX 1. Predicted index that habitat is suitable in Florida for 14 assessed species. Grayscale indicates low (light tone) to high (dark tone). 

Map in the inset boxes show occurrence locations in native, extended, and naturalized range where species are known to be established.  
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APPENDIX 2. Multivariate Environmental Similarity Surface (MESS) of Stellagama stellio. Predictions of the red areas require a caution because 

one or more predictor variables are out of the range of the training data. 

 

 

 


