Dynamic Downscaling: Issues and Considerations Ben Kirtman University of Miami - RSMAS

Issues and Considerations

Regional Thinking

- Efficacy/Value Depends on Physical Environment and Variables of Interest
- There will always be trade-offs between "accuracy" and "credibility"
- Methods: Statistical, Global, <u>Global High Resolution</u>, Telescoping Grids, Regional Climate Models
 - Regional Models Cannot Correct Profound Errors in Large-Scale Forcing (Global Model) – Bias Corrections Necessary
 - Domain Selection Nesting Big-Brother Experiment
 - Temporal Resolution

Robust Estimates of Uncertainty Required

- RCM formulation, Global Model Formulation, External Forcing, <u>NATURAL</u> <u>VARIABILITY</u>
- Use of Climate Information needs to Drive Modeling Design
 - Need to do the "Real" Prediction Problem Verification
- Much Room for Hybrid Statistical Dynamic Approaches

Issues and Considerations

Regional Thinking

- Efficacy/Value Depends on Physical Environment and Variables of Interest

Methods: Statistical, Global, Global High Resolution, Telescoping Grids, Regional Climate Models

Regional Models Cannot Correct Profound Errors in Large-Scale Forcing (Global Model) – Bias Corrections Necessary Domain Selection – Nesting – Big-Brother Experiment

VARIABILITY

- Use of Climate Information needs to Drive Modeling Design
 - Need to do the "Real" Prediction Problem Verification
- Much Room for Hybrid Statistical Dynamic Approaches

Global Models

AR4-CMIP3

AR5-CMIP5

Seasonal Prediction: NMME

Doable Today: Seasonal + Climate Change

Telescoping Grids

- Mathematically and Computationally Elegant
- Regional Domain Affects Global Domain
 - Physical Process Inconsistency
- Domain/Boundary Selection Issues

Regional Climate Models

- Computationally Efficient Easy to Implement
- Regional Scale Model Physics Distinct
- Domain/Boundary/Nesting Selection Issues
- 25-50 km ... 2-10 km

Murphy 1999

- Compares Statistical Downscaling vs.
 Dynamical
 - GCM has observed climate
 - GCM+RCM
 - Pure Stats
- Statistical Methods as Good as Either Dynamical Technique
- RSM has More "Credibility" but not Necessarily More Skill
 - Higher Frequencies, <u>Rainfall Distribution</u>
- Climate Change?

Wet Day Probabilities

(b) PROB >0.1mm (%): RCM

10 20 40 60 70 80 90

(c) PROB >0.1mm (%): GCM

10 20 40 60 70 80 90

(e) PROB >10mm (%): RCM

Murphy 1999

Garbage in – Garbage out

Misra, Dirmeyer and Kirtman 2003

Hwang et al 2011

Wet - Wet

Denis, Laprise et al: Big-Brother Experiment

Total Precipitation Standard Deviation

b

а

Issues and Considerations

- Regional Thinking
 - Efficacy/Value Depends on Physical Environment and Variables of Interest
- There will always be trade-offs between "accuracy" and "credibility"
- Methods: Statistical, Global, Global High Resolution, Telescoping

Robust Estimates of Uncertainty Required RCM formulation, Global Model Formulation, External Forcing, <u>NATURAL</u> <u>VARIABILITY</u>

Use of Climate Information needs to Drive Modeling Design

- Need to do the "Real" Prediction Problem - Verification

• Much Room for Hybrid Statistical – Dynamic Approaches

Mote et al. 2015: Weather@Home Quantifying Uncertainty

Mote et al. 2015

Global High Resolution Example: Athena Project

TABLE I. Project Athena experiments.										
	Resolution	Grid Size	# Cases	Time Period	Data Volume	Comments				
NICAM		7 km	8*	103 days	639 TB	21 May - 31 Aug 2001-2009 * unable to complete 2003				
IFS 13-month Hindcasts	T159	125 km	48 20	395 days	0.7 TB	1 Nov - 30 Nov (next year 1960 - 2007				
	T511	39 km			7 TB					
	T1279	16 km			41 TB					
	T2047	10 km			51 TB					
IFS 103-day Hindcasis	T159	125 km	9	102 days	0.03 TB					
	T511	39 km			0.3 TB	21 May - 30 Aug 2001 - 2009 (a la NICAM)				
	T1279	16 km			2 TB					
	T2047	10 km			6 TB					
IFS 10-Member Ensembles	T511	39 km		122 dava	2.7 TB	21 May-30 Sep				
(Summers)	T1279	16 km	0	132 uays	17 TB	Selected years				
IFS 10-Member Ensembles	T511	59 km	6	151 days	3.2 TB	1 Nov - 31 Mar				
(Winters)	T1279	16 km			20 TB	Selected years				
IFS AMIP	T159	125 km	1	47 years	0.6 TB	1061 2007				
	T1279	16 km			38 TB	1961 - 2007				
JEC Time Clier	T159	125 km	-	47 years	0.6 TB	2071 2117				
IFS TIME SIICE	T1279	16 km			38 TB	2071 - 2117				
Total					874 TB					

Kinter et al. 2013

Cyclone Track Density

a T159 – ERA

Tropical Cyclone Intensity

0.025

67.5 72.5

c T1279 – ERA

TABLE 3. Mean convective/large-scale precipitation (mm day⁻¹) integrated over different domains. Results are based on boreal winters (DJF) of the period 1989–2007 (1989–2006) for 13-month (AMIP style) integrations.

Region	T159	T511	T1279	T2047
	13-m	onth integrati	ons	
15°S–15°N	3.54/1.03	3.57/1.13	3.52/1.23	3.46/1.29
20°–90°N	1.01/1.10	1.06/1.18	1.05/1.20	1.05/1.23
20°–90°S	1.21/1.10	1.18/1.29	1.17/1.35	1.17/1.39
	AMI	P-style integrat	tions	
15°S–15°N	3.56/1.01		3.55/1.24	
20°–90°N	1.04/1.10		1.08/1.20	
20°–90°S	1.20/1.11		1.20/1.37	

-5.9 -5.2 -4.6

Global High Resolution Example: Resolving Ocean Eddies

AR4-CMIP3

AR5-CMIP5

50 km Atmos + 100 km Ocean 50 km Atmos + 10 km Ocean

Kirtman et al. 2012

Kirtman et al. 2012

6.5

3

Climatological Surface Temperature Difference HRC-LRC

July Climatological Convective Precipitation LRC vs. HRC

Climatological Convective Precipitation Difference HRC-LRC

Climatological Convective/Total Precipitation Difference HRC-LRC

Issues and Considerations

- Regional Thinking
 - Efficacy/Value Depends on Physical Environment and Variables of Interest
- There will always be trade-offs between "accuracy" and "credibility"
- Methods: Statistical, Global, Global High Resolution, Telescoping

Robust Estimates of Uncertainty Required RCM formulation, Global Model Formulation, External Forcing, <u>NATURAL</u> VARIABILITY

Need to do the "Real" Prediction Problem - <u>Verification</u>

• Much Room for Hybrid Statistical – Dynamic Approaches

Power Spectra: Jet Position, Ocean KE

Issues and Considerations

Regional Thinking

- Efficacy/Value Depends on Physical Environment and Variables of Interest
- There will always be trade-offs between "accuracy" and "credibility"
- Methods: Statistical, Global, <u>Global High Resolution</u>, Telescoping Grids, Regional Climate Models
 - Regional Models Cannot Correct Profound Errors in Large-Scale Forcing (Global Model) – Bias Corrections Necessary
 - Domain Selection Nesting Big-Brother Experiment
 - Temporal Resolution

Robust Estimates of Uncertainty Required

- RCM formulation, Global Model Formulation, External Forcing, <u>NATURAL</u> <u>VARIABILITY</u>
- Use of Climate Information needs to Drive Modeling Design
 - Need to do the "Real" Prediction Problem Verification
- Much Room for Hybrid Statistical Dynamic Approaches