S.E. Atlantic Tidal Flood Factors: Sea Level Rise and Gulf Stream Effects

Effects of Gulf Stream Variations on Sea Levels along the Eastern Coast
Florida Atlantic University’s Center for Environmental Studies
May 9, 2017

William Sweet
NOAA CO-OPS Oceanographer
1. SLR increases perennial inundation
 • difficult to sense “mean” changes
 ... tides and storms dominate

2. Exacerbates extreme probabilities
 • obscured by rarity of events

3. Exacerbates high-tide flooding
 • more intuitive indicator of climate change-related SLR
Global Sea Level Rise (SLR)

NOAA Altimeter & Interagency Global Sea Level Rise Scenarios (Sweet et al., 2017)

- Low
- Int. Low
- Int
- Int High
- High
- Extreme
 - Topex
 - Jason-1
 - Jason-2
Regional-Local Relative Sea Level Rise

\[\Delta \text{Relative Sea Level (RSL)} = \Delta \text{GMSL} + \Delta \text{RSL}_{\text{climatic}} + \Delta \text{RSL}_{\text{non-climatic}} \]

Virginia Key Sea Level and Future Scenarios
(Sweet et al., 2017)
Regional-Local Relative Sea Level Rise

Thermal Expansion and Oceanographic Effects in Intermediate (1 m) Scenario

$m = \Delta GMSL + \Delta RSL$
Gulf Stream (measured by AOML Undersea Cable)
Induced Changes in Sea Level

Adapted from Sweet et al. (2009)
South Florida Tidal Flood Probabilities

Location (time)
(SLR, Gulf Stream)

Sep 2015
~0.6 m Flood

Local Water Level Height

Probability of Occurrence
(e.g., daily highest tide in a year)

Slowing GS trans.
South Florida Tidal Flood Probabilities (Sweet et al., 2016)

Monthly Maximum WL (m, MHHW)

\[y = -0.02x + 0.68 \]

\[R^2 = 0.18 \]

- 0.2
- 0
 0.2
 0.4
 0.6
 0.8

15 20 25 30 35

Monthly Minimum FC Transport (Sv)

Sep-Nov

- Nuisance Flooding
- Gordon, Irene, Wilma, Rita, Sandy
Time dependent probabilities are quantified:

- with monthly highest water levels
- using a generalized extreme value (GEV) distribution
- Assessing co-variability w/ Florida Current monthly min. transport
- parameters \((\mu, \psi, \xi)\) estimated using maximum likelihood method

GEV cumulative distribution for a level \((z)\) is described by a \textbf{location} \((\mu)\), \textbf{scale} \((\psi)\) and \textbf{shape} \((\xi)\) parameter:

\[
F(z) = \exp \left\{ -\left[1 + \xi (z - \mu(t)/\psi) \right]^{-1/\xi} \right\}
\]

\[
\mu(t) = \beta_0 + \mu_{\text{Seasonal}}(t) + \mu_{\text{Nodal}}(t) + \beta_{\text{trend}}(t) + \beta_{\text{Gulf Stream}}(t)
\]
South Florida Tidal Flood Probabilities

(September) Exceedance Probability Curve for Miami

Location Parameter

Sep 2015 Event (~0.6 m)
Time Dependencies Affecting Tidal Flooding
Gulf Stream Effect: 0.9 cm water level increase in monthly max water level per 1 Sv decline (total collapse~0.3 m)

During a September, if Gulf Stream at higher transport, 30-year event (350% change) instead of 6-yr event

Trend (~SLR) in monthly max of about 11 cm since 1994: 40-yr event in 1994 (500% increase).

- Trend in Gulf Stream location parameter: 2.1 cm

Sea level rise scenarios (e.g., Sweet et al., 2017) capture AMOC slowdown, but magnitude is much higher north of Cape Hatteras. Variability south of Hatteras is apparent in high-tide flooding probabilities.

Under Intermediate Scenario, 0.6 m flood ‘event’ will occur 10+ times per year within about 30 years.