

Ocean Thermal Energy Conversion:
Assessing Potential Physical, Chemical and Biological Impacts and Risks

June 22 - 24, 2010

National Oceanic and Atmospheric Administration National Ocean Service Office of Ocean and Coastal Resource Management

> Coastal Response Research Center University of New Hampshire

Renewable Ocean Energy and the Marine Environment Conference

Nov 4, 2010

Whitney Blanchard
NOAA Office of Ocean
and Coastal Resource
Management

Acknowledgements

- NOAA NOS and NMFS
- DOE EERE
- DON NAVFAC
- EPA Region 9
- USCG
- State of Hawaii
- Lockheed Martin, Makai
 Ocean Engineering,
 Sound and Sea Tech
- Offshore Infrastructure
- OTEC International

- UNH CRRC
- University of Hawaii
- Florida Atlantic University
- ORNL
- Cascadia Research
- MBARI
- Marine Acoustics
- Tenera Environmental
- Alden Lab

Workshop Scope

- Development of baseline data for permitting
 - How to assess potential physical, chemical & biological impacts & risks
 - Methods
 - Mitigate &/or avoid impacts

Regulatory Considerations

- Ocean Thermal Energy Conversion Act (OTECA)
 - Authorizations from NOAA & USCG
 - Other federal
 license/permit
 requirements through
 NOAA OTECA license
 - State approval

- Clean Water Act
- Magnuson-Stevens
 Fishery Conservation
 and Management Act
- Endangered Species Act
- Marine MammalProtection Act
- Migratory Bird Treaty Act
- National Environmental Policy Act

Characteristics/Assumptions

5 MWe Demonstration 100 MWe Commercial Warm Water Intake (WW_i) 20 m Depth, 25 °C Velocity, v = 0.15 m/sFlow, $Q = 25 - 500 \text{ m}^3/\text{s}$ Cold Water Intake (CW_i) $800 - 1000 \text{ m Depth, } 5 \,^{\circ}\text{C}$ $v = 2.5 \text{ m/s}, Q = 25 - 500 \text{ m}^3/\text{s}$ Pipe diameter = 2 - 10 mDischarge (D) Combined or separate Depth and velocity TBD

Day 1 & 2 Breakout Groups

- Warm water intake
- Cold water intake
- Discharge (including biocides and working fluid leaks)
- Physical presence, construction, and accidents
- Noise and electromagnetic fields

- ID Potential Impacts
- Baseline, monitoring, modeling
- Best available technology
- Additional research

Day 3 Breakout Groups

- Fisheries and corals
- Marine mammals and turtles
- Oceanography
- Plankton

- 1. Baseline data
- 2. Monitoring
- 3. Modeling

General Observations

- 25+ years of knowledge/experience
- Existing data & models available
- Lack of appropriate data
- Workshop
 - Not an exhaustive analysis
 - Information gathering for licensing process
 - Findings are not determinative

http://coastalmanagement.noaa.gov/programs/otec.html

Thank you.

whitney.blanchard@noaa.gov

301-563-7203

kerry.kehoe@noaa.gov

301-563-1151

http://coastalmanagement.noaa.gov/programs/otec.html