Emerging extended-range undersea laser mapping techniques

Fraser Dalgleish
Assistant Research Professor
Ocean Visibility and Optics Lab
Harbor Branch Oceanographic Institute
Florida Atlantic University
Overview

“This talk will mainly focus on the application of recently investigated laser systems to enhance detailed benthic site surveys”.

- Background
- Problem Overview
- New Approaches & Results
- Summary & Future Challenges
Background (requirements)

• All marine hydrokinetic devices will have an impact on the surrounding benthic and pelagic habitats.

• Detailed knowledge of the impact on these habitats is critical for decision makers (site selection, future permitting for commercial-scale activities etc.).

• At proposed sites currents are strong and complex, making operation with tethered vehicles (e.g. ROV) difficult.
Background (methods)

• AUVs are used to acquire both side-scan sonar and multibeam imagery of the bottom providing information on hard- vs soft-bottom habitat and low- vs high-relief. Deep Sea Coral Ecosystems are known to exist on hard bottoms.

• Detailed site assessment is necessary for higher resolution ground truthing of acoustic data. It is desirable that this survey be performed concurrently.

• AUVs are 3x faster than deep tow, with less data quality degradation due to coupling of surface motion. However it’s desirable to fly AUV greater than 10m from the seafloor to avoid collisions.
Mosaic of Side Scan Sonar Imagery

Soft bottom (sand, silt, mud)

Hard bottom (likely to be live habitat)

Image courtesy of John Reed and Andy Sherrell, HBOI
Example Images from Optical Survey

In both cases, the camera is about 2 meters from the subject. Blurring and loss of resolution due to Intra-frame motion.

Particulate Scattering
Backward: veiling luminance
Forward: Glow or blur
<table>
<thead>
<tr>
<th>water clarity</th>
<th>example</th>
<th>typical height above seafloor</th>
<th>maximum swath width</th>
<th>resolution (pixel size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>very clear</td>
<td>Hawaii</td>
<td>45 m</td>
<td>65 m</td>
<td>3 cm</td>
</tr>
<tr>
<td>clear</td>
<td>San Diego</td>
<td>22 m</td>
<td>30 m</td>
<td>1.5 cm</td>
</tr>
<tr>
<td>moderate</td>
<td>Wash. State Mass. Bay</td>
<td>9 m</td>
<td>13 m</td>
<td>0.6 cm</td>
</tr>
<tr>
<td>poor</td>
<td>Boston Harbor</td>
<td>3 m</td>
<td>4 m</td>
<td>0.2 cm</td>
</tr>
</tbody>
</table>

Typical performance of monochrome laser line scan system (Science Applications International Corporation).

Laser line scan image of a large group of fish congregating around an isolated rock outcrop.
Courtesy: NOAA Ocean Exploration
Near-monostatic Pulsed-Gated LLS system concept
(imager components reside on one platform; system aims to acquire only direct path irradiance)

- Pulse-gated LLS (PG-LLS) has been test tank demonstrated to offer performance improvement over currently used CW-LLS*

- PG-LLS offers the potential for substantial reduction in system size

- PG-LLS removes ambient light problems

- 3D – More robust object identification and characterization

- Requires packaged high rep rate pulsed laser (2-5W average power) <2% energy instability and fast gated detector – both have become available in 2010

- Significant beam spread between laser and target results in forward-scatter limitation at 5-7 one-way beam attenuation lengths (optical thicknesses)

- However range images are possible beyond 8 attenuation lengths

Near-monostatic pulse-gated LLS system concept

Animation showing pulsed serial imaging concept
Benchtop LLS system

Uses laser-receiver separation of 23.4cm. Allows for comparison between PG-LLS and CW-LLS.

Designed for 70 degree scan, the 10mrad – 30mrad receiver angular aperture precisely tracks the laser as it sweeps across the target. For the described tests, effective swath was < 20 degrees, limited by drum width.

Prototype components were fabricated by Lincoln Laser, Arizona.
Development of Performance prediction/design tool
‘Seabed’ target
Test tank PG-LLS reflectance imaging results at 4.57 attenuation lengths (AL)

(12cm maximum Δrange from background)

n.b. camera and light imaging configuration reaches a contrast limit at 4 AL

2D Reflectance Image

model of partially-proud Rockan mine moulded around rotating imaging drum

shading details are visual cues for ID
PG-LLS preliminary range imaging at 6.8 AL

2D and 3D shaded range images

n.b. range at each pixel is derived from time difference between measured rising edge of outgoing pulse to that of pulse returning from target. Digital timing resolution = 156ps (~3cm in water)
Use of EODES simulation tool – near-monostatic PG-LLS for man-portable AUV

- Main advantage: reduce overall form factor to a size compatible with man-portable AUV

Requires packaged high rep rate pulsed laser (2-5W average power) <2% energy instability and fast gated detector – both have become available in 2010

Multistatic or Distributed LLS

The Distributed Laser Line Scan (DLLS) system concept can offer greater flexibility in surveying underwater environment and offers high bandwidth communications capability.
Distributed LLS system concept
(imager components distributed between at least two platforms; acquires both direct and diffuse path irradiance)

- Offers multistatic configuration and more flexibility in deploying
- Combines imaging and communications techniques
- Can be implemented with low power (<100mW) CW lasers and other low cost commercial electronics subsystems
- Suited to complex geometries (non-line of sight imaging) and greater operational envelope
- Potential to increase area coverage and possibly signal reception by using several illuminator units and/or multiple receiver/transceiver units
- To fully realize potential, requires co-operative UUV swarms which presents significant additional challenges

Futuristic Multistatic LLS Imaging and Networking

Animation showing distributed networking and imaging behaviors under development. Eventual implementation may be expendable due to low cost.
Summary of imaging results: high spatial frequency target (dime)

Major loss of contrast and resolution due to both volumetric scatter and forward scatter/blur/glow.
Summary of imaging results: Multistatic Architecture

<table>
<thead>
<tr>
<th>Laser 1 multistatic</th>
<th>Laser 2 multistatic</th>
<th>Laser 2 modulated</th>
<th>Laser 2 CW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Active optical systems are available today that can provide identification quality images for detailed benthic site surveys through 4-5 attenuation lengths, but they require relatively high power and cost.

The next generation extended range systems must be smaller, require less power, less expensive and be compatible with deployment on small unmanned systems.

Autonomous networks offer greater flexibility in how systems and system components are fielded, but also present significant challenges.
Other possible applications of laser techniques to
MHK device monitoring

• Long range detection of marine animals

• Tracking of targets to study avoidance behavior

• Use of laser light as a deterrent

• DLLS capability could allow for laser-based
 control and telemetry of robotic inspection and
 maintenance platforms

• other ideas?
Questions?

fdalglei@hboi.fau.edu