KEYSMAP (Florida Keys Marine Adaptation Planning)

Robert Glazer, Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Marathon, FL 33050 bob.glazer@myfwc.com

Partners and Pls

How Alternative Future Scenarios are Used in the Terrestrial Climate Change Adaptation Planning

Peninsular Florida Current Land Use

Scenarios JUNIMAN

Map Legend

Current Land Use

Agriculture

Urban

Conservati

A Case Study – The American Crocodile

Current Habitat/Range

Crocodile Distribution – 2060

Potential Habitat 2060

Potential Habitat Under Low Sea-level Rise

Potential Habitat Under Medium Sea-level Rise

Figure 18: American Crocodile : Potential Habitat 2060

Potential Habitat Under High Sea-level Rise

Applying the Concept to the Marine Environment – KEYSMAP

- Under different IPCC scenarios, what will be the effect on *acidification*, sea level rise, water temperature?
- How will those anticipated impacts affect critical habitats?
- How will the changes to the habitats impact sentinel species?
- Couple these to social scenarios, what will be the effect on human population distribution, and resource use?
- What adaptation approaches may be suitable under the different scenarios?

The Study Area

Sources: FWC/FWRI, NOAA

Habitats Under Consideration

Species Under Examination

Workshop Driven

- Pre-Workshops SLAMM and habitat vetting with local habitat experts and SLAMM modelers
- Workshop 1 Managers and Habitat Specialists
- Workshop 2 Species Experts and Habitat Specialists
- Workshop 3 Managers

Workshop 1 – Developing Scenarios Summer 2012

Attended by Managers from

- FI FWC
- NPS
- USFWS (e.g., Refuges, LCCs)
- USGS (including the SE Climate Science Center)
- NOAA FKNMS, NMFS climate, AOML
- DEP State Parks
- US Navy
- TNC
- Audubon

Data Sources Integrated into KEYSMAP

- SST models from AOML
- SLAMM modeling for SLR
- Cooperative Land Cover Maps for Terrestrial
- FWRI Habitat Maps for Coral
- TNC Bleaching GIS
- FWC Boater Use GIS (1992 and 2012)
- Expert Opinion on Habitat Usage
- Zoning

Scenario Development

Workshop 2 – March 2013

- Species Experts
- Integrates SLAMM, SST, species distributions, human activities (commercial fishing, recreational fishing, tourism), zoning
- TNC reef condition and bleaching GIS

Step 1 - Sea Level Rise Modeling (SLAMM)

Sources: FWC/FWRI, NOAA

SLAMM Parameters

Description	Lower Keys - Gulf side	Lower Keys - Ocean Side	Middle Keys - Gulf Side	Middle Keys - Ocean Side	Upper Keys - Bayside	Upper Keys - Ocean Side
NWI Photo Date						
DEM Date						
Direction Offshore	Ν	S	Ν	S	Ν	S
Historic Trend (mm/yr)	2.27	2.27	2.94	2.94	2.39	2.39
MTL-NAVD88 (m)	-0.223	-0.247	-0.261	-0.289	-0.232	-0.265
GT Great Diurnal Tide Range (m)	0.563	0.432	0.358	0.542	0.329	0.705
Salt Elev. (m above MTL)	0.431	0.259	0.291	0.227	0.31	0.31
Marsh Erosion (horiz. m/yr)	1.8	1.8	1.8	1.8	1.8	1.8
Swamp Erosion (horiz. m/yr)	1	1	1	1	1	1
T. Flat Erosion (horiz. m/yr)	0.1	0.1	2	2	0.5	2
Reg. Flood Marsh Accr. (mm/yr)	3.9	3.9	3.9	3.9	3.9	3.9
Irreg. Flood Marsh Accr (mm/yr)	4.7	4.7	4.7	4.7	4.7	4.7
Tidal Fresh Marsh Accr (mm/yr)	5.9	5.9	5.9	5.9	5.9	5.9
Inland Fresh Marsh Accr (mm/yr)						
Mangrove Accr (mm/yr)	3.3	3.3	3.3	3.3	3.3	3.3
Tidal Swamp Accr (mm/yr)						
Swamp Accr (mm/yr)						
Beach Sed. Rate (mm/yr)	1	1	0.5	0.5	0.5	0.5
Freq. Overwash (years)	25	25	25	25	25	25

Predicting changes in Sea Surface Temperature

Liu, Lee, Muhling, Lamkin, Enfield. 2012. Significant reduction of the Loop Current in the 21st century and its impact on the Gulf of Mexico. J Geophysical Res

Predicting changes in Sea Surface Temperature

Upcoming activities

- March 2nd workshop on species
- April 3rd workshop brings back managers for adaptation planning

All Models are Wrong Some Are Useful

