

Specific Future Climate Scenarios (2060)

- I. +1.5 °C Temperature Increase
- II. 1.5 Foot SLR Increase (9.5 mm y⁻¹)
- III. +/- 10% Change in Precipitation
- IV. 490 ppm CO₂

I) The Everglades Mangrove Community (Diverse Forest Structure, Geomorphology and Biogeochemistry)

Mangrove Community Distribution in Everglades

Northern Florida Bay Mangrove Forests

Major Drivers of Everglades Mangrove Communities

- 1) Sea Level Rise Rates
- 2) Hurricane (Disturbance/Recovery)
- 3) Salinity/Temp/CO₂

Measurements of Wetlands Keeping Pace with SLR

Accretion Rates - Elevation Change = Shallow Subsidence/Expansion

Northern Florida Bay Mangroves (Taylor Creek Basin) – Coronado/Sklar

Non-flooded Sites

Elevation Change Vertical Accretion Soil Expansion

1.5 mm yr⁻¹ 0.9 mm yr⁻¹ 0.6 mm yr⁻¹

Permanent Flooded

Elevation Change 1.4 mm yr⁻¹ Vertical Accretion 3.3 mm yr⁻¹ Shallow Subsidence -1.9 mm yr⁻¹

Frequently Flooded Sites

Elevation Change Vertical Accretion Soil Expansion

2.5 mm yr⁻¹ 1.8 mm yr⁻¹ 0.7 mm yr⁻¹

Southwest Florida (Shark River Region) – Tom Smith

Elevation Change 0.87 mm yr⁻¹ Vertical Accretion 2.9 mm yr⁻¹ Soil Subsidence -2.0 mm yr⁻¹

Mangrove Communities "state change" by Hurricanes

Smith et al. 2009

- Transport propagules inland (recruitment)
- Influx sediment, nutrients (accretion)
- Scour coastline (erosion/peat collapse)

Coastal Forests - Rapid Sediment Deposition

(10-80 mm pulsed event)

Smith et al. 2009

Efflux of Sediments and Compaction (1 m tides along Gulf of Mexico)

Long-Term Post Hurricane Sediment Elevation Change and Accretion Rates Southwest Florida (Shark River Region)

Loss of Forest and Belowground Structure

- Erosion of Surficial Peat Delayed Tree Mortality
- Peat Oxidation
- Peat Collapse

Little Shark Island-West Coast after Wilma 2005 Smith et al. 2009

Temperature, Salinity and Elevated CO₂ Effects Mangroves (Eddy Covariance 30 m Towers – Mouth of Shark River)

Barr et al. 2010

Rate of Mangrove Peat Accumulation-Caribbean

March of the Mangroves (Latitudinal Shifts Community)

Conclusions

- •Using a 9.5 mm y⁻¹ scenario for sea level rise (SLR) coastal mangrove forests would be overwhelmed and not likely keep pace with SLR
- •Rates of elevation change long-term are ~1-2.5 mm y⁻¹ with reliance on belowground biomass and autochthonous processes to maintain elevation- highly vulnerable to SLR.
- •Storm surges can deposit 10-80 mm along SW coast and ~5 mm Florida Bay some of which is subsequently lost back to tide
- •Storms can also destabilize sediments with high forest mortality causing erosion (20-30 mm) and peat collapse-with ~3yr lag phase
- •Reduced freshwater flows and marine transgression with SLR will move the mangrove community into marsh habitat
- •Mangrove community productivity is enhanced under polyhaline conditions (<29 ppt) and temperatures below 30°C

Scientific Needs

- Regional measurements and estimates of SLR
- Higher resolution Elevation Maps in Mangrove zone
- Role physiochemical processes, forest type and pulsed events on Mangrove sediment elevation change
- Sediment "Erodibility" Index Maps Nutrient Content
- Mangrove Island SET studies in Florida Bay
- Modelling scenarios integrating drivers of various time scales

Future Management Scientific Needs

- Develop models that can assist in determining if freshwater input into Florida Bay (as part of CERP) could slow down the inland expansion of mangrove into the Everglades?
- Will freshwater inputs increase above and belowground mangrove productivity and long-term elevation changes keep pace with SLR?
- Will rising CO₂ increase productivity at higher salinity levels and enhance above and below-ground productivity?

II. The Greater Everglades Seagrass and SAV Community (Oligohaline to Marine Species: Ecotone to FL Reef Tract)

Marine SAV Community Distribution in Everglades

Major Drivers of Greater Everglades Marine SAV Communities

- 1) Salinity
- 2) Nutrients
- 3) Light
- 4) Grazing/Competition (CO₂ Enrichment)

Modeled Increases Freshwater Flows

- Upper basins increased Halodule (Ruppia) over Thalassia (CERP Goal)
- Western basins insensitive up to 4xs flows because of mudbanks/basins
- Sea level rise dilute these modest effects

Landscape Nutrient Flux with Sea Level Rise (Linkages between slr, water quality and light)

Large Scale Seagrass Mortality Events Nutrient Pulses to Water Column Florida Bay

4 to 5 mmol P m⁻²

1 m Depth (4-5 μmol P L⁻¹)

Landscape Nutrient Flux with Sea Level Rise (Linkages between slr, water quality and light)

Florida Bay Bank Elevation Changes - Critical GOM and Internal Circulation

- Currently Wide-Ranging Estimates Mudbank Accumulation Rates
- 210 Pb high rates 3 to 30 mm y⁻¹ (Median = 4.6 mm y⁻¹) (Holmes et al. 2001)

Direct Calcification-Dissolution Rates CaCO₃ on Banks

Substrate type	Area (m²)	(g CaCO ₃ m ⁻² yr ⁻¹)	Sediment accumulation (cm 1000 yr ⁻¹)
Basins			
Sparse seagrass	375,128,462	-112.0	-9.6
Intermediate seagrass	190,807,051	-83.9	-7.2
Hard bottom	439,668,144	776.0	66.9
Mud bottom	209,804,241	-78.4	-6.8
Dense seagrass	65,288,753	235.0	20.2
Mixed bottom	57,619,872	126.0	10.8
Open sand	59,182,515	nd	\mathbf{nd}
Banks			
Mud bank suite	309,493,603	235.0	20.2

-0.1 to 0.7 mm y⁻¹

Net Calcification Banks and Basins FL Bay Declined higher Salinity and Temp

Yates and Halley (2006)

Temperature and Photosynthesis

X CO₂ Marine Plants ??

Thalassia-Growth

Elevated Temperature and Thermal Limits

(Australian Seagrasses)

Sargassum-Temperature Threshold

Koch and Anderson in prep.

Thermal Limits Keystone Florida Keys Species

Koch et al.

Oxygen Concentrations (mg/L) at 100% O₂ Saturation as Function Salinity and Temperature

		Salinity (psu)						
		25	30	35	40	45	50	55
Temperature (°C)	10	9.62	9.32	9.02	8.74	8.47	8.20	7.94
	15	8.65	8.39	8.14	7.89	7.65	7.42	7.20
	20	7.85	7.62	7.40	7.18	6.97	6.77	6.57
	25	7.17	6.97	6.77	6.58	6.40	6.22	6.04
	30	6.59	6.41	6.24	6.07	5.90	5.74	5.59
	35	6.08	5.92	5.77	5.62	5.47	5.33	5.19
1	40	5.64	5.49	5.35	5.22	5.08	4.95	4.83

CO₂ Enrichment Seawater "Ocean Acidification"

More Complex in the Ocean!! Inorganic Carbon Speciation – Carbonate Equilibria

	Air O ₂ (g) ↑	pCO ₂ i	Pre- industrial	Present	Yr 2100	Change pre-industrial to Yr 2100	
Gas	Exchange	Carbon Dioxide in µatm	280 [277]	394 [392]	1,000 [1,087]	257% [292%]	
	Seawater	Carbon Speciation umol kg-1					
	$_{2}^{(aq)+H_{2}O} \longrightarrow$	H ₂ CO ₃ Carbonic Acid	8	11	31	288%	
	$_{\text{H}_2\text{CO}_3} \stackrel{\longrightarrow}{\longleftarrow}$	H ⁺ + HCO ₃ ⁻ Bicarbonate	1650	1771	2046	24%	
L	HCO₃⁻	H ⁺ + CO ₃ ²⁻ Carbonate	264	215	104	(- 61%)	
		DIC	1922	1997	2180	13%	
		pH _(sws)	8.16	8.04	7.66	(- 6%)	
		$\Omega_{({ m calcite})}$	6.36	5.18	2.49	(-61%)	
		$\Omega_{(ext{agragon} ext{ite})}$	4.19	3.41	1.64	(-61%)	

Seagrasses and Marine Macroalgae Utilize HCO₃ and CO₂ Are They Saturated with Ci?

Thalassia testudinum (Seagrass – Angiosperm)

Elevated *p***CO**₂ x Temperature Winter Experiment

Field CO₂ Vent Studies

Hall-Spencer et al. (2008)

Carbonate Dynamics Estuarine Systems Driven by Metabolic Processes

```
~490 ppm pCO₂ Contour
2060 Senario
---> > 490 ppm pCO₂
```

- - -> < 490 ppm *p*CO₂

Conclusions

- •Increased freshwater flows not likely balance increased salinities with a 9.5 mm y⁻¹ SLR scenario unless higher precipitation occurs and banks overtop increasing basin exchange
- •Higher salinity and P and lower light promote *Halodule* and Phytoplankton over *Thalassia*, using NW lakes as a model
- •Major losses of Thalassia in the Bay will elevate water column P and recycling, promoting Phytoplankton blooms
- •Sustained 1.5°C increase (33.5°C, 2060) modest physiological effects on macro-autotrophs, but 4°C (36°C, 2100) significant impacts
- •Elevated temperatures (+salinity) increase ecosystem respiration, sulfide production and lower saturation of dissolved O₂ in the Bay
- •CO₂ dynamics in productive coastal systems primarily driven by ecosystem metabolism: > heterotrophy:autotrophy promote fleshy over calcifying algae and sediment dissolution (compounded over long term by ocean acidification)

Scientific Needs

- Regional measurements and estimates of SLR
- Bank and basin water quality and vegetation monitoring in support FATHOM model – validation and tracking system metabolic shifts
- Better quantification of changes in bank elevation and movements
- Sensitivity of dissolution basin/bank carbonate sediments (temp, salinity, light and pCO₂) and linkage with seagrass metabolism
- Temperature x light x CO₂ interactions marine benthic autotrophs

Future Management Scientific Needs

- Integrate regional hydrodynamic models to landscape and ecosystem models of mangrove-seagrass-reef tract system capture synergistic responses from various climate change scenarios (SLR, precip, tidal, hydrodynamic, temp changes)
- Include major drivers of seagrasses, phytoplankton and carbonate sediment processes in new models developed to test scenarios of climate change impacts (light, nutrients, temperature, metabolism)

Questions?