

Screening analysis of Climate Scenarios

Jayantha Obeysekera , Jenifer Barnes, Moysey Ostrovsky Hydrologic & Environmental Systems Modeling

Predicting Ecological Change in the Florida Everglades in a Future Climate Change Scenario Florida Atlantic University February 14-15, 2013

Outline

Rationale for scenario selection

- Temperature
- Precipitation
- Sea Level Rise

 Scenario simulation using SFWMM (a.k.a. 2x2 model)

Peek at results

Research publications

Past and Projected Trends in Climate and Sea Level for South Florida

Hydrologic and Environmental Systems Modeling Technical Report

July 2011

Revised: 28 May 2010 - Accepted: 2 June 2010 - Published: 15 June 2010

sfwmd.gov

Reg Environ Change DOI 10.1007/s10113-013-0411-0								
ORIGINAL ARTICLE								
Validating climate models for computing evapotranspiration in hydrologic studies: how relevant are climate model simulations over Florida?								
in hydrologic studies: how relevant simulations over Florida?	are climate r	nodel						
in hydrologic studies: how relevant simulations over Florida? Jayantha Obeysekera	are climate r	nodel						
in hydrologic studies: how relevant simulations over Florida? Jayantha Obeysekera	are climate r	nodel						

Scenario-Based Projection of Extreme Sea Levels

Jayantha Obeysekera[†] and Joseph Park[‡]

Michelle M. Irizarry-Ortiz¹*, Jayantha Obeysekera¹, Joseph Park¹, Paul Trimble¹, Jenifer Barnes¹, Winifred Park-Said¹, Erik Gadzinski²

Probabilistic Projection of Mean Sea Level and Coastal Extremes

Jayantha Obeysekera, P.E., M.ASCE¹; Joseph Park, P.E.²; Michelle Irizarry-Ortiz, P.E.³; Jenifer Barnes⁴; Paul Trimble⁵

David B. Enfield, Alberto M. Mestas-Nuez and Paul J. Trimble

Potential Impacts on Water Resources Management in South Florida

Climate Change Drivers

Natural Cycles Inter-annual (e.g. El Nino and La Nina) to Multi-decadal (e.g. AMO*) Solar, Volcanos

Human Induced Land use changes Greenhouse gases

Water Management Impacts

Direct landscape impacts (e.g. storm surge)
Water Supply (e.g., saltwater intrusion)
Flood Control (e.g. urban flooding)
Natural Systems (e.g. ecosystem impacts, both coastal and interior)

*<u>Atlantic Multi-decadal Oscillation of temperature in the Atlantic Ocean</u>

sfwmd.gov

Natural Variability (Teleconnections)

sfwmd.gov

Lake Okeechobee Inflow

Hydrologic Cycle – will it remain stationary under climate change?

Primary Variables of interest:

- Temperature
- Precipitation
- Evapotranspiration
- Saltwater Intrusion
- Implications for:
- Water Management
- Energy
- Agriculture
- Tourism
- Health

sfwmd.gov

Rainfall Deviations from Mean of 133 cm

Monthly Distribution

South Florida Water Management Model

- Integrated surface water groundwater model
- Regional-scale 2 mi x 2mi grid, daily time step
- Major components of hydrologic cycle
- Overland and groundwater flow, seepage
- Operations of C&SF system
- Water shortage policies
- Agricultural demands simulated
- Provides input and boundary conditions for other models

Regional Modeling Approach

Water Demands

sfwmd.gov

Operating Criteria

Measures

(Ag, Env, Urban)

SOUTH FLORIDA WATER MANAGEMENT DISTRICT Hydrologic Performance Measures

sfwmd.gov

Everglades Restoration – Will traditional planning approach work?

Spatio-Temporat Rainfall Dataset

Figure 2.2.1.1 Location of Rainfall Stations

- Daily Rainfall (1965-2005)
- Spatially interpolated to create a spatial dataset for each day
- Future Rainfall Scenarios?

Reference Evapotranspiration (RET) – for this exercise

$$ET_{p} = \frac{K_{1} * R_{s}}{\lambda} = \tau R_{a} = K_{r} (T_{max} - T_{min})^{0.5} R_{a}$$

R_s = Incoming solar radiation

- R_a = Solar radiation at the top of the atmosphere
- T_{max} and T_{min} are daily max and min temperature

Using Climate Change Information

Book of Climate Output

sfwmd.gov

GCM Resolution in Florida

Uncertainties in GCM predictions due to:

- Poor resolution South Florida not even modeled in some GCMs; greater errors at smaller scales
- From IPCC AR4-WG1, Ch. 8 Simulation of tropical precipitation, ENSO, clouds and their response to climate change, etc.

Climate Projection Uncertainties

GCM Projections – Bayesian Approach (Tebaldi et al., 2008)

MODEL

Likelihood:

Observed: $X_0 \sim N[\mu, -\lambda_0^{-1}]$ GCM (current): $X_i \sim N[\mu, -\lambda_i^{-1}]$ GCM(future): $Y_i \sim N[\nu, -(\theta\lambda_i)^{-1}]$ Priors:

 $\mu, v \sim U(-\infty, +\infty)$ $\lambda_{i} \sim \Gamma (a,b), \theta_{i} \sim \Gamma (c,d)$

- A Bayesian approach
- Reward models with respect to BIAS (w.r.t. current climate) and CONVERGENCE (consensus on future projections)
- 23 Models, SRES scenarios A2(high), A1B (midrange), B1(low)
- Posterior distribution of precipitation & temperature for each season & future decades

Projected Temperature Change from AOGCMs (for 2050) – Posterior Distribution

Region used in computation

•The vertical bars correspond to the percentiles, 5% and 95% of the posterior distributions of temperature change for b1,a1b, and a2 scenarios (red, black and blue)

sfwmd.gov

Statistical Downscaling – Example (Bias Correction-Spatial Disaggregation)

FLORIDA WATER SOUTH MANAGEMENT DISTRICT

Future Projections – Temperature & Precipitation

Ρ

MS MODELING

Change: Magnitude & Seasonality

Everglades

%Change in Mean Annual Precip.

Average Temperature

a2 scenario

Spatial Trends

Temperature

Precipitation

Dynamical Downscaling North American Regional Climate Change Assessment Program

Acknowledgement: NARCCAP is funded by the National Science Foundation (NSF), the U.S. Department of Energy (DoE), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Environmental Protection Agency Office of Research and Development (EPA)."

NARCCAP Scenario & Model Suite

NARCCAP

Change Precipitation

NARCCAP

Changes in duration of "dog days" & BCCA "freezing temperatures"

Freezing – Mean Number of days minimum below 32° F

Sea Level Rise

Rising Seas – Historical Data

- Relative Sea Level (height above a local datum) depends on:
 - Global Mean Sea Level
 - Regional Variability
 - Vertical Land Movement (uplift/subsidence)

Unified SE FL Sea Level Rise Projection

Projected range of sea level rise (National Climate Assessment, 2013)

Draft report: http://ncadac.globalchange.gov

Summary of Projections for 2060

Modeling Scenarios

- 2010 Baseline (demands and landuse corresponding to 2010 simulated with the 1965-2005 rainfall & ET (BASE)
- 2010 Baseline with 10% decrease in rainfall (decRF)
- 2010 Baseline with 10% increase in rainfall (incRF)
- 2010 Baseline with 1.5° Celsius increase and 1.5 foot sea level rise with increased coastal canal levels (incET)
- 2010 Baseline with 10% decrease in rainfall, 1.5° Celsius increase and 1.5 foot sea level rise with increased coastal canal levels (decRFincET)
- 2010 Baseline with 10% decrease in rainfall, 1.5° Celsius increase and 1.5 foot sea level rise with <u>no increased coastal canal levels</u> (decRFincETnoC)

 2010 Baseline with 10% increase in rainfall, 1.5° Celsius increase and 1.5 foot sea level rise with increased coastal canal levels (incRFincET)

sfwmd.gov

Potential ET change

sfwmd.gov

Percent Change in Demand and Runoff (K ac-ft)

Туре	BASE	decRF	incRF	incET	decRF incET	decRF incETnoC	incRF incET
Palm Beach County Irrigation	209	3	-6	-2	1	1	-8
Broward County Irrigation	161	3	-6	2	5	5	-5
Miami-Dade County Irrigation	231	4	-5	5	9	9	-1
EAA	309	20	-10	25	61	60	6
C-43 Demand	107	15	-14	14	31	31	-1
C-43 Runoff	713	-27	28	-11	-36	-36	17
C-44 Demand	24	21	-16	21	47	47	2
C-44 Runoff	166	-26	28	-12	-36	-36	15

Changes to boundary flows (Kissimmee Basin Example)

sfwmd.gov