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 Downscaling methods are based on relationships between coarse and 
high resolution historical data, and between observed and simulated 
variables;

 Time and resource efficient;

 Bias Correction;

 Examples: 

 Regression  Methods (Huth, 1999);

 Weather Generators (Wilks and Wilby, 1999);

 Changing Factor Methods (Beniston et al., 2003);

 Statistical Downscaling Model (SDSM; Wilby et al., 2001);

 Bias Correction and Spatial Downscaling (BCSD; Wood et al., 2004);

 Weather Typing Methods (WTM; Vrac, 2007);

 Constructed Analogues (CA; Hidalgo et al., 2008); 

 Joint Variable Spatial Downscaling (JVSD; Zhang and Georgakakos, 2011).

Statistical Downscaling Methods
Existing Methods
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Bias Correction and Spatial Downscaling – BCSD (1)
Wood et al., 2004

 Bias Correction – quantile to 
quantile association of GCM 
output to up-scaled observations 
(i.e., spatially averaged, 
temporally aggregated);

 Spatial Downscaling –
interpolation of monthly GCM 
anomalies from 2 to 1/8 degrees, 
and addition to long term 
observed means;

 Temporal Disaggregation –
resampling of observed daily 
sequences.

2 Deg

1/8 Deg
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1. Generate monthly cumulative 
distribution functions (CDFs) of P and 
T for GCM and OBS data;

2. Identify Tavg GCM future trend;

3. Adjust P or T individually using the 
quantile to quantile association;

4. Add back the Tavg GCM trend to the 
adjusted GCM values.

Bias Correction and Spatial Downscaling – BCSD (2)
Bias Correction
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X

=

1/8D1/8D

1/8D

1. Compute factors (for the adjusted GCM P and T values) at each 2 degree 
grid cells in the domain (factors: P/[Domain Pavg]; T – [Domain Tavg]);

2. Interpolate the 2 degree factor values to 1/8 degree resolution using the 
SYMAP algorithm (Shepard, 1984), a modified inverse-distance-squared 
interpolation;

3. Apply the interpolated factors to the original 1/8 degree resolution OBS 
data.

Bias Correction and Spatial Downscaling – BCSD (3)
Spatial Disaggregation
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Joint Variable Spatial Downscaling – JVSD (1)
Zhang and Georgakakos, 2011
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30-day T-P

10-day T-P

5-day T-P

1-day T-P

 Historical Analog Approach
 Contemporaneous for all Basin Area

Spatially Downscaled
T-P Fields

Joint Variable Spatial Downscaling – JVSD (3)
Spatial Disaggregation
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 JVSD corresponds well with OBS in all seasons
 BCSD exhibits discrepancies in MAM and JJA 
 BCSD under-estimates extremes 

JVSD – BCSD Tests and Comparisons
Seasonal Joint CDFs (Buford Watershed, GA)

(OBS vs. BCSD)                  (OBS vs JVSD)

P (vertical axes, meters/month) - T (horizontal axes, oC)

Control Run
1950 - 1999
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OBS (red), BCSD (blue), JVSD (green)

JVSD – BCSD Tests and Comparisons
P-T Seasonal Correlation

 JVSD represents historical P-T correlations better
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JVSD – BCSD Tests and Comparisons
Spatial Correlations

Pair-wise correlation box plots for all ACF Watersheds (OBS vs. JVSD vs. BCSD)

Upper Flint. Georgia.

Middle Chattahoochee-Lake Harding. Alabama, Georgia.

Upper Chattahoochee. Georgia.

Middle Chattahoochee-Walter F. George Reservoir. AL, GA.

Middle Flint. Georgia.

 BCSD over-estimates spatial correlations

OBS          JVSD         BCSD

P

T
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 BCSD exhibits spatial correlation biases

JVSD – BCSD Tests and Comparisons
Spatial Correlations (2)

OBS (red), BCSD (blue), JVSD (green)
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Comparison of Dynamic/Statistical Downscaling
North America Regional Climate Change Assessment Program 

(NARCCAP)

2041 - 2070



14

Georgia Tech

Comparison of Dynamic/Statistical Downscaling
Precipitation, Buford

BUFORD - Frequency Curve Dynamic Downscaling VS. Statistical (Precipitation: m/mo)
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 Dynamic Downscaling is comparable to JVSD without bias correction
 BCSD under-estimates both precipitation extremes with respect to JVSD
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Comparison of Dynamic/Statistical Downscaling
Temperature, Buford

BUFORD - Frequency Curve Dynamic Downscaling VS. Statistical (Temperature: oC)
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 Dynamic Downscaling is comparable to JVSD without bias correction
 BCSD and JVSD perform comparably for temperature
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Summary
Downscaling Method Differences

 Single vs. joint variable downscaling

 Spatial and temporal relationships

 Representation of extremes

 Select approach based on assessment features and requirements 
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Climate Assessment
Knowledge Gaps, Further Research/Information Needs

 Do GCMs/Downscaling procedures preserve long process memory (Hurst)? 

 Very significant implications for water management
 Do GCMs preserve long process memory? 
 Can downscaling methods be developed to preserve H?  
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Climate Assessment
Southeast US, ACF
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JVSD Results
CCCMA CGCM3.1 – SRESA1B

DJF

MAM

JJA

SON

OBS           OBS_JVSD      FUT1_JVSD    FUT2_JVSD OBS           OBS_JVSD      FUT1_JVSD    FUT2_JVSD

 Warmer MAM, JJA, and SON  Wetter DJF
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JVSD Results
CCCMA CGCM3.1 – SRESA2

DJF

MAM

JJA

SON

OBS           OBS_JVSD      FUT1_JVSD    FUT2_JVSD OBS           OBS_JVSD      FUT1_JVSD    FUT2_JVSD

 Warmer DJF, MAM, JJA, and SON  Wetter DJF, MAM
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Precipitation Frequency Curve
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PET Frequency Curve
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Climate Assessment
Buford: Historical and Future Precipitation, PET (A2)

 Future precipitation extremes (wet and dry) are expected to increase
 Future PET will be higher than historical
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Precipitation Frequency Curve
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PET Frequency Curve
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Climate Assessment
Woodruff: Historical and Future Precipitation, PET (A2)

 Future precipitation extremes (wet and dry) are expected to increase
 Future PET will be higher than historical; the difference increases with latitude
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 PET:
Future > Historical from
April through September

 Precipitation:
Wetter Jan, Feb, Mar, Apr
Drier June, July, August
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Buford: Monthly Historical and Future P, PET (A2)
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Climate Assessment
Woodruff: Monthly Historical and Future P, PET (A2)
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Assessing Change
J. Reagan and A. Georgakakos

1986 - 2010 Tmin Trends
(p-values in yellow)

Significant Trends
(Individual Cells: p<0.05)

Significant Trends
(Cell Groups)

Trend (Slope)

 Apparent climatic change may or may not be statistically significant.

 Statistical significance is different for individual cells and cell groups. 
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Individual Cells
 Reorder period of trend for each cell or basin randomly.
 Estimate sampling distribution of trend.
 Data was reordered 2000 times to find 2000 random trends.
 Test the null hypothesis that the actual trend is not significantly different than 

zero.
 Reject the null hypothesis if p < 0.05. 

Assessing Change
Bootstrap Approach

Groups of Cells
 Each cell or basin is tested as a group with its neighbor cells or basins.
 An average observed trend is found for the group and compared with the 

average randomly generated trends.
 Reject the null hypothesis if the p-value of the group trend is less than 0.05.
 Add new neighbors to the group until the p-value becomes greater than 0.05.
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Are these changes significant?



35

Georgia Tech
Thank you!

The future ain’t what it used to be!

Yogi Berra


