Monitoring the Use of Prescribed Fire on Public Lands in Florida

Jim Cox and Kevin Robertson
Florida Prescribed Fire Monitoring Project

- Assess status of prescribed burning and monitoring efforts
- Recommend procedures land managers can use to monitor the use of prescribed fire
You MUST conduct post-burn evaluations!
Importance of Fire Monitoring

- Identify needs for changes in management plans, including funding and resources
- Institutional knowledge improved
- Possibility of linking permits to data on a given burn unit
- Improves information exchange among agencies
- May improve burn program
Importance of Fire Monitoring

- Identify needs for changes in management plans, including funding and resources
- Institutional knowledge improved
- Possibility of linking permits to data on a given burn unit
- Improves information exchange among agencies
- May improve burn program
Importance of Fire Monitoring

- Identify needs for changes in management plans, including funding and resources
- Institutional knowledge improved
- Possibility of linking permits to data on a given burn unit
- Improves information exchange among agencies
- May improve burn program
Importance of Fire Monitoring

- Identify needs for changes in management plans, including funding and resources
- Institutional knowledge improved
- Possibility of linking permits to data on a given burn unit
- Improves information exchange among agencies
- May improve burn program
Importance of Fire Monitoring

- Identify needs for changes in management plans, including funding and resources
- Institutional knowledge improved
- Possibility of linking permits to data on a given burn unit
- Improves information exchange among agencies
- May improve burn program
If we don’t provide accurate numbers, politicians will make them up!

“Forest burning in Florida creates more air pollution than coal power plants.”

Debbie Lightsey, Tallahassee Commissioner
Interview agency personnel & survey land managers

Develop draft protocols & solicit comments at 3 regional workshops

Refine protocols & conduct field tests

Create manual & provide cost estimates
Results from Land Manager Survey
\( (n = 87) \)

- 48% say burn plans not adequately implemented
- Top limitation (16%): staff funding
- 90% say burns blocks digitized
Results from Land Manager Survey
(n = 87)

- 55% want to increase “summer” burning
- 32-58% want to increase frequency (varies by habitats)
- Top need (26%): better fuel models
- 83% conduct post-burn evaluations (54% GPS’ed)
Our current fire-monitoring program
What is Fire Monitoring?

- Record and analyze *First-order Fire Effects*
Don’t you go taking my staff away from any burning!
**Tiered Approach for Flexibility**

**Tier 1**  – Burn Coverage and Fire Description on Burn Day

**Tier 2**  – Qualitative Post-burn Evaluation Requiring Follow-up Visit

**Tier 3**  – Quantitative PBE’s such as TNC, TTRS, and others
Tier 1 – Requirements

- Acreage or GIS coverage for Burn Blocks (available for most managed areas)
- Standard habitat description (using FNAI hierarchical approach)
- Fuel Model Number (Rothermel)
- Estimate of Burn Acreage per Habitat Type
- Prescription Information
Tier 1 – Coverage and Description

Standard Fuel Models

1 Short grass
2 Timber/grass cover
3 Tall grass
4 Chaparral
5 Brush
6 Dormant brush
7 Southern rough
9 Hardwood litter
10 Timber/litter
11 Light logging slash
12 Medium logging slash
13 Heavy logging slash
Tier 1 – Coverage and Description

- On the day of the burn, provide a quick overview of the event
Tier 1 – Coverage and Description

- On the day of the burn, provide a quick overview of the event

  How much actually burned?
  What were the parameters?
  Any escapes or smoke problems?
**Tier 1 - Prescribed Burn Monitoring Form**

1. **Property:** 
2. **Agency:** 

3. **Burn Unit Name/No.:** 
4. **Acreage in Burn Unit:** 
5. **Permit No.:** 
6. **DOF Customer No.:** 

7. **Burn Date:** / / 8. **Last Burn Date:** / / 9. **Start Time:** 10. **End Time:**

---

### Table 1.1

<table>
<thead>
<tr>
<th>Burn Unit #</th>
<th>Period</th>
<th>Weather</th>
<th>Type #1</th>
<th>Fire Weather</th>
<th>Type #2</th>
<th>estro</th>
<th>Real</th>
<th># Acres in Burn</th>
<th>Acreage Burned</th>
<th>Acreage Burned</th>
<th># Acres in Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

---

*General notes on instructions by Firewise Society of America, Inc.*

### Table 1.2

<table>
<thead>
<tr>
<th>Weather Condition</th>
<th>Percent</th>
<th>Temperature</th>
<th>Amount</th>
<th>%</th>
<th>Weather Condition</th>
<th>Percent</th>
<th>Temperature</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Precipitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wind</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Heat Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface Heat Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Surface Heat Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Wind Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Wind Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Rainfall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Rainfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Humidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Humidity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. **Reason(s) for Burning:** ecological | economical | forestry | fire reduction | range | site prep | wildlife

13. **Firefighting Technique:** back | flank | head | M. equipment | aerial | foot | vehicle

14. **Smoke Sensitive Areas Expected:** yes | no

15. **Any Ikats:** yes | no

16. **Max. Flame Length:** <3' | 3-6' | >6' | >9'

17. **Deb Burn Treatment:** chemical | chopper | harvest | mechanical | field | none

**General Observations:**

Tier 1 - Prescribed Burn Monitoring Form

---
Is This Monitoring Helpful?

- One test site targeted 2300 acres on permit but burned only 165 acres

- One site targeted 650 acres, but RH was 65% and acreage burned was 320
You're doing okay so far about the staff thing...
Tier 2 – Post-burn Evaluation (PBE)

- Conduct qualitative PBE using categorical and incremental measures
Table 2 - Post-Prescribed Burn Monitoring

<table>
<thead>
<tr>
<th>Location</th>
<th>Method</th>
<th>Baseline</th>
<th>1-3 months</th>
<th>4-6 months</th>
<th>7+ months</th>
<th>&gt; 9 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>Ground</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Field</td>
<td>Plot</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Location</th>
<th>Method</th>
<th>Baseline</th>
<th>1-3 months</th>
<th>4-6 months</th>
<th>7+ months</th>
<th>&gt; 9 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>Ground</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Field</td>
<td>Plot</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 1 - Monitoring Concept Drawing

Figure 2 - Vegetation Loss

Table 4

<table>
<thead>
<tr>
<th>Location</th>
<th>Method</th>
<th>Baseline</th>
<th>1-3 months</th>
<th>4-6 months</th>
<th>7+ months</th>
<th>&gt; 9 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>Ground</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Field</td>
<td>Plot</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes:

- Add additional notes and comments as needed.

- Review and update monitoring protocols as necessary.

- Conduct post-prescribed burn monitoring across all areas as specified in the protocol.

- Monitor vegetation loss and changes in the forest ecosystem.
## Tier 2 - Example

<table>
<thead>
<tr>
<th>19. *Percent Canopy Scorch</th>
<th>No Scorch</th>
<th>1% - 30%</th>
<th>31% - 60%</th>
<th>61% - 90%</th>
<th>&gt;90%</th>
</tr>
</thead>
</table>
| 20. Hardwood TopKill (2-8ft) | 0% - 25% | 26% - 50% | 51% - 75% | >76% | **Objectives Met?**  
Yes No NA |
| 21. Young Pine Topkill (2-8ft) | 0% - 25% | 26% - 50% | 51% - 75% | >76% | **Objectives Met?**  
Yes No NA |
| 22. *Substrate Burn Severity Class | Unburned | Scorched | Lightly Burned | Moderately Burned | Heavily Burned |
## Tier 2

### Burn Severity Class (NPS 1991)

<table>
<thead>
<tr>
<th>Substrate (litter/duff)</th>
<th>Unburned</th>
<th>Scorched</th>
<th>Lightly Burned</th>
<th>Moderately Burned</th>
<th>Heavily Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not burned</td>
<td>litter partially blackened; duff nearly unchanged; wood/leaf structures unchanged</td>
<td>litter charred to partially consumed; upper duff layer burned; wood/leaf structures charred, but recognizable</td>
<td>litter mostly to entirely consumed leaving coarse, light colored ash; duff deeply burned; wood/leaf structures unrecognizable</td>
<td>litter and duff consumed, leaving white ash; mineral soil visibly altered, often reddish</td>
</tr>
</tbody>
</table>
Use grids to help estimate extent of fire effects
Data from Test Sites

Flame Length (Rank Order)

Percent Area Having >90% Crown Scorch

Data from Test Sites
Access Database Structure

jim@ttrs.org
Tier 3 – Multiple Samples

TTRS Transects: 1 hour per 200 acres
Dense small hardwood stems (>20 per m²), top-kill >95%.

5-10 hardwood stems per m², top-kill 60-90%.
Tier 3 Information

- Data collection based on multiple samples (walk-through transects, plots, etc.)

- Provide nature of additional information and contact info (e.g., long-term vegetation monitoring plots, fuel-load measurements, photo points, research projects).
## Results - Flatwood Burn Severity

### Wet Flatwoods, Initial Assessment

<table>
<thead>
<tr>
<th>Severity</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unburned</td>
<td>9850.5</td>
</tr>
<tr>
<td>Low</td>
<td>5673.825</td>
</tr>
<tr>
<td>Low-Moderate</td>
<td>3442.725</td>
</tr>
<tr>
<td>Moderate-High</td>
<td>1312.2</td>
</tr>
<tr>
<td>High</td>
<td>168.975</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>20448.23</strong></td>
</tr>
<tr>
<td><strong>Total Burned</strong></td>
<td><strong>10597.73</strong></td>
</tr>
</tbody>
</table>

![Map and chart showing burn severity and percent fire area](image-url)